Errata for MA141 Fall 2016

\#1. Chapter 0 Section 2 Subsection 2 Exercises
Page 27: Exercise 4. The equation should be:

$$
36 x^{2}+9 y^{2}-324=0
$$

\#2. Chapter 0 Section 2 Subsection 2 Exercises
Page 29: Exercise 8. A better equation is:

$$
4 x^{2}+25 y^{2}+24 x+250 y=-561
$$

\#3. Chapter 0 Section 3 Subsection 8 Exercises
Page 64: Exercise 22. Interchange horizontal asymptote and vertical asymptote in parts (a) and (c).
\#4. Chapter 0 Section 3 Subsection 8 Exercises
Page 68: Exercise 50. A better equation would be

$$
2-3 \sin \theta=1-5 \sin \theta
$$

\#4. Chapter 0 Section 3 Subsection 8 Exercises
Page 68: Exercise 51. Change the t-interval to

$$
0 \leq t<\pi
$$

\#4. Chapter 0 Section 3 Subsection 9 Answers to Selected Exercises
Page 70: Exercise 33. Interchange the answers for (c) and (d)
\#5. Chapter 0 Section 1 Subsection 1 Exercises
Page 77: Exercise 13. The t-interval should be

$$
0 \leq t<\frac{\pi}{2}
$$

\#6. Chapter 1 Section 1 Subsection 5 Answers to Selected Exercises
Page 19: Exercise 17. Interchange the answers for (d) and (e)
\#7. Chapter 1 Section 2 Subsection 5 Exercises
Page 39: Exercise 2. Add the following question: What limit does this prove?
\#8. Chapter 2 Section 1 Subsection 4 Exercises
Page 13: Exercise 10. Add the hint: Use the alternate definition of the derivative.
\#9. Chapter 2 Section 3 Subsection 3 Answers to Selected Exercises
Page 34: Exercise 15. The correct answer is

$$
\frac{d y}{d x}=\frac{1}{2 \sqrt{x}}-\frac{1}{2 x^{3 / 2}} \quad \frac{d^{2} y}{d x^{2}}=-\frac{1}{4 x^{3 / 2}}+\frac{3}{4 x^{5 / 2}}
$$

\#10. Chapter 2 Section 6 Subsection 5 Exercises
Page 76: Exercise 18. Change this equation to

$$
\tan y=\frac{1}{x}
$$

\#11. Chapter 3 Section 1 Subsection 4 Answers to Selected Exercises
Page 17: Exercise 21. Answer: The function $f(x)=x^{1 / 3}$ is not differentiable at $x=0$. The function has a vertical tangent at $x=0$. Newton's method is not applicable on intervals that contain $x=0$. The method spirals away from $x=0$.
\#12. Chapter 3 Section 3 Subsection 4 Exercises
Page 67: Exercise 1. The given graph is for f^{\prime} not f.
\#13. Chapter 3 Section 3 Subsection 4 Exercises
Page 68: Exercise 2. The given graph is for f^{\prime} not f.
\#14. Chapter 3 Section 3 Subsection 5 Answers to Selected Exercises
Page 83: Exercise 17 (e). There is a third point of inflection namely: $(0,2)$.
\#15. Chapter 3 Section 4 Subsection 1 Exercises
Page 92: Exercise 12. This is really a challenging problem. And lets make the fence 9 ft tall.
\#16. Chapter 3 Section 4 Subsection 2 Answers to Selected Exercises Page 95: Exercise 11. The dimension are $20 / 3 \mathrm{~cm}$ by $80 / 3 \mathrm{~cm}$ by $80 / 3 \mathrm{~cm}$.
\#17. Chapter 3 Section 5 Subsection 3 Exercises
Page 107: Exercise 28. Change the limit to

$$
\lim _{x \rightarrow \infty}\left(1+e^{x}\right) e^{-x}
$$

\#18. Chapter 3 Section 5 Subsection 4 Answers to Selected Exercises Page 108: Exercise 23. Answer: $e^{3 / 2}$
\#19. Chapter 3 Section 6 Subsection 4 Answers to Selected Exercises Page 126: Exercise 9. The answer is:

$$
d f=\left(3 x^{2}-4 x\right) d x, \quad \Delta f \approx\left(3 \cdot 2^{2}-4 \cdot 2\right) \cdot 0.1=0.4, \quad f(2.1) \approx-2+0.4=-1.6
$$

\#20. Chapter 4 Section 5 Subsection 1 Exercises
Page 60: Exercise 12. Change to

$$
\int_{0}^{2} \frac{x^{3}}{\sqrt{x^{2}+1}} d x
$$

\#21. Chapter 4 Section 5 Subsection 2 Answers to Selected Exercises Page 61: Exercise 5. The answer is:

$$
-\frac{\pi}{4}-\frac{\ln 2}{2}+\frac{\sqrt{3} \pi}{3}
$$

\#22. Chapter 5 Section 1 Subsection 2 Answers to Selected Exercises Page 77: Exercise 1. The answer is: 42.05
\#23. Chapter 5 Section 1 Subsection 2 Answers to Selected Exercises Page 77: Exercise 9. The answer is: $e^{2}-\frac{1}{e} \approx 7.02$

